Mapping ice front changes of Müller Ice Shelf, Antarctic Peninsula

first_imgMüller Ice Shelf (67°15′S, 66°52′W) is situated at the southern end of Lallemand Fjord. It is a small ice shelf (∼80 km2) fed by Brückner and Antevs glaciers, which both flow northward off the central peaks of Arrowsmith Peninsula; the ice shelf contains an ice rise (Humphreys Ice Rise). Data sources have indicated that not only has the ice front retreated since 1947 but also that there have been two advances. This paper describes how these changes were recorded using simple photogrammetric techniques.last_img read more

Measurement techniques in gas-phase tropospheric chemistry: a selective view of the past, present, and future

first_imgMeasurements of trace gases and photolysis rates in the troposphere are essential for understanding photochemical smog and global environmental change. Chemical measurement techniques have progressed enormously since the first regular observations of tropospheric ozone in the 19th century. In contrast, by the 1940s spectroscopic measurements were already of a quality that would have allowed the use of modern analysis techniques to reduce interference between gases, although such techniques were not applied at the time. Today, chemical and spectroscopic techniques complement each other on a wide range of platforms. The boundaries between spectroscopic techniques will retreat as more Fourier transform spectrometers are used at visible wavelengths and as wide-band lidars are extended, and combining chemical techniques will allow detection of more trace gases with better sensitivity. Other future developments will focus on smaller, lighter instruments to take advantage of new platforms such as unmanned aircraft and to improve the effectiveness of urban sampling.last_img read more

Reevaluation of coleoid cephalopod relationships based on modified arms in the Jurassic coleoid Mastigophora

first_imgMastigophora brevipinnis Owen, 1856, is a ‘fossil teuthid’ presently considered to be a member of the coleoid cephalopod Suborder Loligosepiina Jeletzky, which in turn has been placed by various authors in or near the Vampyromorpha Grimpe. Recent morphological and biochemical analyses indicate that vampyromorphs are more closely related to the Octopoda than to the Decapodiformes. Fossils of Mastigophora from the Oxford Clay (Jurassic: Callovian) show soft-tissue preservation and evidence of arm crown specialization. Some of these fossils have up to eight short, thick arms with circular sucker-like structures and filiform distal extensions, plus what appear to be the bases of two thinner ventrolateral arms. The latter lack proximal suckers and curve medially to insert into the arm crown, similar to the tentacles that are the modified ventrolateral arms of living squids and cuttlefishes. This suggests that the thinner structures were decapod-like tentacles. If Mastigophora had tentacles homologous with those of modern decapods, then it was a decapod, because this synapomorphy defines the Decapodiformes. This indication of decapod affinities for Mastigophora brings into question the relationships of the other ‘fossil teuthids’. The inferred relationship of the Loligosepiina, including Mastigophora, with the Vampyromorpha, based largely on similarities of gladius morphology with that of living Vampyroteuthis, may reflect shared plesiomorphic characters.last_img read more

Growth rates of Antarctic fur seals as indices of environmental conditions

first_imgThe growth rates of Antarctic fur seal (Arctocephalus gazella) pups estimated from weighing cross-sections of the population were compared with measured/ inferred changes in the availability of their main prey species, Antarctic krill (Euphausia superba) from 1989 to 2000. There was no relationship between growth rate and mass at weaning and there were counter-intuitive indications of higher growth rates in years of low krill availability. Biases reflecting changes in the component of the population available for sampling appear to invalidate the widely held assumption that interannual differences in growth rate can reliably be derived from differences in the slope of a linear relationship based on cross-sectional population samples. A new index was developed, based on the deviation of pup mass at age in each year compared to the multiyear mean, that was not dependent on assumptions of linearity. The indices of growth deviates produced a more logical relationship with other indices of pup development and related more appropriately to variations in prey availability. The potential impact of methodological biases on the interpretation of growth rate suggests that comparisons of growth rates should not rely on assumptions regarding the underlying growth pattern.last_img read more

Early–Middle Jurassic dolerite dykes from western Dronning Maud Land (Antarctica): identifying mantle sources in the Karoo Large Igneous Province

first_imgA suite of dolerite dykes from the Ahlmannryggen region of western Dronning Maud Land (Antarctica) forms part of the much more extensive Karoo igneous province of southern Africa. The dyke compositions include both low- and high-Ti magma types, including picrites and ferropicrites. New 40Ar/39Ar age determinations for the Ahlmannryggen intrusions indicate two ages of emplacement at ~178 and ~190 Ma. Four geochemical groups of dykes have been identified in the Ahlmannryggen region based on analyses of ~60 dykes. The groups are defined on the basis of whole-rock TiO2 and Zr contents, and reinforced by rare earth element (REE), 87Sr/86Sr and 143Nd/144Nd isotope data. Group 1 were intruded at ~190 Ma and have low TiO2 and Zr contents and a significant Archaean crustal component, but also evidence of hydrothermal alteration. Group 2 dykes were intruded at ~178 Ma; they have low to moderate TiO2 and Zr contents and are interpreted to be the result of mixing of melts derived from an isotopically depleted source with small melt fractions of an enriched lithospheric mantle source. Group 3 dyke were intruded at ~190 Ma and form the most distinct magma group; these are largely picritic with superficially mid-ocean ridge basalt (MORB)-like chemistry (flat REE patterns, 87Sr/86Sri ~0·7035, {varepsilon}Ndi ~9). However, they have very high TiO2 (~4 wt %) and Zr (~500 ppm) contents, which is not consistent with melting of MORB-source mantle. The Group 3 magmas are inferred to be derived by partial melting of a strongly depleted mantle source in the garnet stability field. This group includes several high Mg–Fe dykes (ferropicrites), which are interpreted as high-temperature melts. Some Group 3 dykes also show evidence of contamination by continental crust. Group 4 dykes are low-K picrites intruded at ~178 Ma; they have very high TiO2–Zr contents and are the most enriched magma group of the Karoo–Antarctic province, with ocean-island basalt (OIB)-like chemistry. Dykes of Group 1 and Group 3 are sub-parallel (ENE–WSW) and both groups were emplaced at ~190 Ma in response to the same regional stress field, which had changed by ~178 Ma, when Group 2 and Group 4 dykes were intruded along a dominantly NNE–SSW strike.last_img read more

Efficacy of δ18O data from Pliocene planktonic foraminifer calcite for spatial sea surface temperature reconstruction : comparison with a fully coupled ocean–atmosphere GCM and fossil assemblage data for the mid-Pliocene

first_imgSea surface temperature (SST) estimates using the δ18O composition of fossil planktonic foraminifer calcite, within the time slice 3.12 to 3.05 Ma (Pliocene, Kaena Subchron – C2An1r) are assessed for nine Atlantic Ocean sites. These are compared with SST estimates from fossil assemblages for the ‘Time Slab’ 3.29–2.97 Ma and with estimates from a fully coupled ocean–atmosphere General Circulation Model (GCM) for the same time interval. Most SST estimates derived from the δ18O data indicate a cooler ocean surface than at present, through the latitudinal range 69.25° N to 46.88° S. At some sites the temperature difference is greater than 5 °C (cooler than at present). This contrasts with SST estimates from fossil assemblages that give warmer than present temperatures at mid- to high latitudes, and similar temperatures in the tropics, and with the GCM, which predicts SSTs warmer than at present across all latitudes for this time interval. Difficulties interpreting the ecology of fossil foraminifer assemblages and inaccurate estimates of mid-Pliocene seawater δ18O composition (δ18Osw) at some sites may partly produce the temperature discrepancy between isotope-based and fossil-based SST estimates, but do not adequately explain the cool signal of the former. We interpret the cool SST estimates from the δ18O data to be the product of: (a) calcite formed at a level deep within or below the ocean mixed-layer during the life-cycle of the foraminifera; (b) secondary calcite with higher δ18O formed in the planktonic foraminifer tests in sea bottom pore waters. Although these effects differ between sites, secular and temporal oceanographic trends are preserved in the primary calcite formed in the mixed-layer near the ocean surface, witnessed by the latitudinal variation in estimated SSTs. Reconstructing accurate mid-Pliocene SSTs with much of the existing published oxygen isotope data probably requires a detailed re-assessment of taphonomy, particularly at tropical sites. This study also indicates that methods for estimating Atlantic Pliocene δ18Osw need to be refined.last_img read more

Taking issue with PPARC over STP

first_imgFollowing the PPARC programmatic review announced in the spring of last year, with its gloomy outlook for solar–terrestrial physics, three young scientists in the field mobilized the junior members of the STP community. Gary Abel, Jim Wild and Mick Denton tell the story which led to an unprecedented meeting of early-career scientists, followed by an informative meeting with PPARC chief executive Prof. Keith Mason.last_img

Distribution, population dynamics and growth rates of Thysanopoda acutifrons, Thysanoessa inermis and Nematobrachion boöpis in the Irminger Sea, North Atlantic

first_imgEuphausiids are an important component of the northern North Atlantic ecosystem and several species are found in the Irminger Sea. However, data on euphausiids in this region are few, particularly for Thysanopoda acutifrons, Thysanoessa inermis and Nematobranchion boöpis. In this paper, we present the first data since the 1930s on the seasonal distribution and population dynamics of these species from net haul data collected in the Irminger Sea during winter, spring and summer 2001–2002. Thysanoessa inermis was the most numerically abundant (0.63–26.62 ind. 1000 m−3) of the three species in the region and comprised a biomass of 3.92–41.74 mg 1000 m−3. The species was largely found in the upper regions of the water column (0–400 m) and was distributed in the more on-shelf/shelf-break regions around East Greenland and Iceland. Growth rates were around 0.03 mm d−1for T. inermis and there was some evidence that either the timing of spawning was delayed, or larval development was prolonged in the region. Thysanopoda acutifrons was predominantly distributed below 400 m in more oceanic regions and had a low abundance (1.23–1.64 ind. 1000 m−3) throughout the Irminger Sea. However, the species comprised a relatively high proportion of biomass (19.39–31.33 mg 1000 m−3) due to its large body size. Our data showed that the species had low rates of growth (0.04 mm d−1) and development throughout the year, and that the reproductive season occurred during the overwintering period (November/December) once individuals had reached two years of age. Nematobranchion boöpis mainly occurred below 400 m at low abundance (0.06–0.18 ind.1000 m−3) levels throughout the region. The species was largely found where Atlantic waters prevailed in the Irminger Current and its growth rates were variable (0.02–0.06 mm d−1). Nematobranchion boöpis was a year-round spawner and the species had fairly rapid rates of post-larval development, with the newly spawned 0-group reaching sexual maturity within the first 6 months. Data presented in this paper provide useful baselines for understanding the possible impacts of long-term, broad-scale environmental change on the ecology of euphausiid communities in the Irminger Sea.last_img read more

The impact of polar stratospheric ozone loss on southern hemisphere stratospheric circulation and climate

first_imgThe impact of polar stratospheric ozone loss resulting from chlorine activation on polar stratospheric clouds is examined using a pair of model integrations run with the fully coupled chemistry climate model UM-UKCA. Suppressing chlorine activation through heterogeneous reactions is found to produce modelled ozone differences consistent with observed ozone differences between the present and pre-ozone hole period. Statistically significant high latitude Southern Hemisphere (SH) ozone loss begins in August and peaks in October-November, with >75% of ozone destroyed at 50 hPa. Associated with this ozone destruction is a >12 K decrease of the lower polar stratospheric temperatures and an increase of >6 K in the upper stratosphere. The heating components of this temperature change are diagnosed and it is found that the temperature dipole is the result of decreased shortwave heating in the lower stratosphere and increased dynamical heating in the upper stratosphere. The cooling of the polar lower stratosphere leads, through thermal wind balance, to an acceleration of the polar vortex and delays its breakdown by ~2 weeks. A link between lower stratospheric zonal wind speed, the vertical component of the EP flux, Fz, and the residual mean vertical circulation, w*, is identified. In December and January, increased westerly winds lead to increases in Fz, associated with an increase in tropopause height. The resulting increase in wavebreaking leads to enhanced downwelling/reduced upwelling over the polar cap. Many of the stratospheric signals modelled in this study propagate down to the troposphere, and lead to significant surface changes in December.last_img read more

Marine ecology: a wonderland of marine activity in the Arctic night

first_imgStudies carried out on a wide variety of Arctic species during the polar night reveal continued feeding, growth and reproduction, changing our view of this period from one of biological stasis to a time of continued high activity levelslast_img