Juventus to use Pjanic as bait in Pogba deal

first_imgJuventus are willing to offer Miralem Pjanic to Manchester United in order to re-sign Paul Pogba, according to Sports Mole.The Bianconeri are reportedly still desperate to bring Pogba back to the club and will offer the Bosnia international midfielder as a make weight in the deal.Pogba has had a new lease of life at Old Trafford since the appointment of Ole Gunnar Solskjaer as caretaker manager of the Red Devils, who have won each of their five games since Jose Mourinho was sacked last month.The Frenchman’s long-term future at United is far from being settled, however, with both Barcelona and Juventus being touted as potential destinations for the 25-year-old next summer.The World Cup winner won four Serie A titles with Juventus between 2012 and 2016 and recently called Turin his home.Franck Ribery, FiorentinaFiorentina owner: “Ribery played better than Ronaldo!” Andrew Smyth – September 14, 2019 Fiorentina owner Rocco Commisso was left gushing over Franck Ribery’s performance against Juventus, which he rates above that of even Cristiano Ronaldo’s.Reports in Italy suggests that the Italian champions are still keen on a deal to bring Pogba back to the Allianz Stadium, as they look to continue their dominance in the Serie A while trying to win the UEFA Champions League for the first time in more than 20 years.Pjanic, who has 114 appearances to his name for Juventus since joining Massimiliano Allegri’s side from Roma in 2016, is contracted to the Old Lady until the end of the 2022-23 campaign.last_img read more

Hybrid energy harvester generates electricity from vibrations and sunlight

first_img More information: Dae-Yeong Lee, et al. “Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator.” Nanotechnology 24 (2013) 175402 (6pp). DOI: 10.1088/0957-4484/24/17/175402 (a) Diagram of the silicon nanopillar solar cell. (b) Diagram of the hybrid energy harvester consisting of a piezoelectric nanogenerator integrated on to of a silicon nanopillar solar cell. Credit: Dae-Yeong Lee, et al. ©2013 IOP Publishing Ltd The researchers, Dae-Yeong Lee, et al., from Sungkyunkwan University and Samsung Advanced Institute of Technology, both in South Korea, have published their study on the hybrid energy harvester in a recent issue of Nanotechnology.”By using the hybrid energy harvester, two different energy sources can be utilized in one platform,” coauthor Hyunjin Kim at the Samsung Advanced Institute of Technology told Phys.org. “Thus the total output power from the hybrid harvester can be increased compared to each separate harvester. Furthermore, by harvesting two energy sources in one device, continuous output can be generated even when only one energy source is available.”To design the harvester, the researchers turned to silicon nanopillar solar cells for the sunlight harvesting half of the device. Previous research has shown that silicon nanopillar solar cells are promising candidates as photovoltaic devices due to their low reflection, high absorption, and potential for low-cost mass production. After fabricating the cells using a plasma etching technique and annealing processes, the researchers coated the top of each cell to prepare it for placement of the piezoelectric generator, which was stacked on top using a spin coating method. Last, top and bottom electrodes sandwich the device.The entire harvester has a height of just a few hundred nanometers, with the bulk of the height coming from the 300-nm-tall nanopillars in the solar cell. In tests, the energy harvester could generate electricity from the solar cells with a 3.29% conversion efficiency. At the same time, the harvester could generate 0.8 V of output voltage when exposed to a 100-dB sound. The hybrid device suggests that harvesting both solar and vibration energies can enable more efficient harvesting in certain environments compared to a device that harvests just one kind of energy. “This energy harvester can be very useful where there is no electric grid connected,” coauthor Won Jong Yoo at Sungkyunkwan University said. “For example, this device will be useful in moving vehicles such as moving boats, trains, automobiles, etc. The output of 0.8 V is just preliminary data. If we optimize the device structure and fabrication condition, the output power will be increased significantly.”In the future, the researchers plan to fabricate all-flexible hybrid energy harvesting devices using plastic substrates in order to harvest mechanical energy more efficiently. Citation: Hybrid energy harvester generates electricity from vibrations and sunlight (2013, April 17) retrieved 18 August 2019 from https://phys.org/news/2013-04-hybrid-energy-harvester-electricity-vibrations.html (Phys.org) —Devices that harvest energy from the environment require specific environmental conditions; for instance, solar cells and piezoelectric generators require sunlight and mechanical vibration, respectively. Since these conditions don’t exist all the time, most energy harvesters don’t generate a constant stream of electricity. In order to harvest ubiquitous energy continuously, researchers have designed and fabricated a hybrid energy harvester that integrates a solar cell and piezoelectric generator, enabling it to harvest energy from both sunlight and sound vibration simultaneously. This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.center_img Explore further Journal information: Nanotechnology Copyright 2013 Phys.org All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of Phys.org. IMEC reports 40 microwatt from micromachined piezoelectric energy harvesterlast_img read more